Small-angle X-ray scattering from RNA, proteins, and protein complexes.
نویسندگان
چکیده
Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of algorithms for the reconstruction of 3-D electron density maps from 1-D scattering profiles have made possible the generation of useful low-resolution molecular models from SAXS data. Furthermore, SAXS is well suited for the study of unfolded or partially folded conformational ensembles as a function of time or solution conditions. Here, we review recently developed algorithms for 3-D structure modeling and applications to protein complexes. Furthermore, we discuss the emerging use of SAXS as a tool to study membrane protein-detergent complexes. SAXS is proving useful to study the folding of functional RNA molecules, and finally we discuss uses of SAXS to study ensembles of denatured proteins.
منابع مشابه
Application of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues
ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....
متن کاملHIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective
HIV-1 Rev is an ~13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE), a ~350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger comp...
متن کاملExploring RNA oligomerization and ligand binding by fluorescence correlation spectroscopy and small angle X-ray scattering.
RNA forms defined structures and binds specifically to target molecules. The combination of data which results from fluorescence correlation spectroscopy (FCS) and small angle X-ray scattering (SAXS) measurements can be used to determine intermolecular interactions between RNA and its binding partners. To define oligomerization states of free RNA and its complexes with bound target molecules, h...
متن کاملAnalysis of X-ray and neutron scattering from biomacromolecular solutions.
New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are presented. Small-angle scattering is rapidly becoming a streamline tool in structural molecular biology providing unique information about overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and assembly processes.
متن کاملStructural characterization of proteins and complexes using small-angle X-ray solution scattering.
Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of biophysics and biomolecular structure
دوره 36 شماره
صفحات -
تاریخ انتشار 2007